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THE DYNAMIC BEHAVIOUR OF CYLINDRICAL SHELLS
REINFORCED BY RING RIBS—II.

SHELLS OF FINITE LENGTH

V. N. MazarLov and Y. V. NEMIROVSKY

Institute of Hydrodynamics, The Siberian Branch of the USSR Academy of Sciences, Novosibirsk

Abstract—A circular cylindrical shell reinforced by ribs of limited rigidity and equidistant from each other,
clamped by the edges, is under the action of an impulsive load. The basic assumptions are identical to those of
part I [1].

When the ribs are placed rather frequently the solution to the problem is obtained from those obtained in
part I [1] by a change of notation, so we consider below that the ribs are placed “sparsely”. The cases of ““small”,
“medium” and “large” loads are investigated; the differential equations of motion are listed in a form suit-
able for numerical integration by an electronic computer for every case. As the distance of the spans from the
shell’s edges varies the dynamical behaviour of the spans is generally different. It is shown by numerical cal-
culation of some concrete examples that cetera paribus with sufficient accuracy we may consider the dynamic
behaviour of all spans, except extreme ones, identical to that of an infinitely long shell, and the extreme spans
moment can be analysed by means of the example of a shell clamped by the edges with one ring in the middle.
For the values of the parameter p satisfying p > p, < ./6 this is confirmed analytically.

NOTATION

2l,R,2h the length of a span, the radius of the middle surface, the thickness of a shell wall, respectively
T, the turning force per unit of length carried by a facing
26,d the height and the breadth of a rib, respectively
M, the bending moment per unit of the circumference of the middle surface
w the radial displacement
P the uniformly distributed pressure
to the duration of pulse action
Yo1»Yo2 the surface density of the material of a facing and ribs, respectively
x the coordinate on the generatrix
t the time
Go1,002 the yield limit for stretching-pressing the facing and the ribs, respectively
Vo1 Vo2 the specific weight of a facing and ribs, respectively
z the general number of rings of a shell

INTRODUCTION

THE analysis of the dynamic behaviour of an infinitely long reinforced shell carried out
in part I [1] was greatly simplified because it was only necessary to consider the behaviour
of one span, or, to be more precise, one half of it (due to symmetry).

The situation becomes much more complicated for a shell of a finite length when the
shearing forces g (i = 1,2,...z), which, as will be shown below, are far from coinciding
with each other, depend on the ordinal number of the rib. Therefore the dynamic behaviour
of different links of the shell is different and it becomes necessary to study their interaction
during the motion.
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In this paper the pecularities are investigated of the dynamic behaviour of cylindrical
shells of finite length reinforced by rings. The discussion is based on the hypotheses accepted
in part L. For definiteness the boundary conditions are used corresponding to the clamping
of the edges.

When ribs are placed frequently enough and their rigidity is comparatively low the
solution of the problem can be determined from the solutions obtained in part I by means
of the interpretations indicated in Section 6. In this paper the rings are assumed to be
placed “‘sparsely” and to have large but finite rigidity.

1. THE CASE OF “LOW” LOADS

We place the origin of coordinates on the left support (Fig. 1) and we direct the x-axis
along the generatrix and the displacements axis W along the internal normal to the middle
surface of the shell. Since the case discussed in the sequel pertains to ‘“‘sparsely” placed
rings of comparatively large rigidity, the dynamic motion of the shell has the form shown

in Fig. 1. Let us call a link a part of the shell which encloses a rib and is bounded by the
two rings of plastic deformation nearest to the rib. The equation of motion of a link, e.g.,
for the i-th, can be written in the form (cf. part I [1])

m’ +2u%(t, +p—w) =0 (1.1
p+q;_ +ql+—(1+a0)_iw i = 0, (l = 1’ 2" v ’S)' (]2)
P

Here the prime denotes the derivative with respect to the non-dimensional coordinate
¢ = x/l and a dot—with respect to the nondimensionless time 1 = t/t,.

Due to the symmetry of the problem only half of the length of the shell is considered ;
hence

{2/2, when z is an even integer
B (z+1)/2, when z is an odd integer

Just as in part I we consider further the shells with u > 4, where p, is determined by
the formula (1.5) of part I. Then at the loads p < p,. [p,. is defined there by the formula
(1.13)] the rings remain motionless and the corresponding motion of the shell spans is
investigated in [2]. Therefore we shall further discuss the case of p > p,..
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For loads slightly exceeding p,. we have the following velocity fields (regime AB in
Fig. 2)
wigfdy...0<¢<¢Ey)
W(E, T) =3 Wyt (W= W) (& —ONET —&) ... (& <& <&) (1.3)
Woit Wiy =W (E— &N i1 — &5 & <8< &y y)
Wi = W&, )5 Wy = WEE, D) (= 1,2,...,5).

Here ¢; is the coordinate of the plastic ring hinge of the i-th span, £ and & are the
coordinates of the left and the right rims of the same (the i-th) rib. The ordinal number
of the ring is considered to coincide with that of the span if the ring is on the right of the
span and is one unit greater if the ring is on the left of the span. Substituting (1.3) into (1.1)
we obtain after integration of the obtained equation with the boundary conditions

m0,7) = m(&F, 1) = —1;  m, 1) =1, (1.4)
the following field of generalized stresses at (0 < 7 < 1)
1, 8B2—n)—(p-DE]+Cel~1...0< ¢ < &)
RO =W, (& — & /3m+ (W, + 1= p)E2 1+ AT E+Br . (G < E<E))
L0041 = W, )(E = &F ) /32— 10 )+ Oby + 1= )]+ AT E+ B
EF &< &)
(= {—1..-(5?—1 <¢=<d)
—(l+ag)... (& <& < &) (1.5)
Co = — {1 2~n)?[W; —3(p—D]-6}/32—n,);
A7 = {ﬂzﬂi[ﬂi(wi—wpi)—3(wpi+1‘P)(€i+fi—)]_6}/3'11§
B = —[A7 &7 + (& (b, +1-p)+1];
= {22~ 114 D Wis 1 = W) Q=154 )+ 300+ 1= P)&is 1 + &)= 6}/32— 154 1)
B = —[A/ & + (&), +1-p)+11;
m=& —&;  (=12..,9.

Here the plastic ring hinges are assumed to be stationary during the action of the load
which is described as a rectangular impulse.
In the plastic ring hinges the moment achieves its maximum, therefore

m(€;—0,7) = m'(;+0,7) = 0. (1.6)
Using (1.6), we obtain from (1.5)
P2 —n) W, +2W;—3(p—1)]+6 =0
W W,+ 2w, —3(p—1)]+6 = 0, .7
whence we obtain the recurrent formula

Woi = Wy + 24— )i 2 —n)*; (= 12,...,9). (1.8)

m(, 1) =

N
4
il
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On the other hand, from equation (1.2) we obtain by applying certain relations (cf. for-
mulae (1.2) in part I)

g7 = —m(& =0,0/2u0; g =m(& +0.0/2u6, (i=12,..5) (1.9)

i

and from (1.5) it follows that
Ay =W, = {40u~"(p—1—ap)+[p—1 + 6/ 2= s D2 A= 14 O}
X(4l{9ﬂ_1+2+7],‘—ﬂ,‘+1)71. (110)

Formulae (1.8) and (1.10) give all in all s algebraic equations for s unknown values of
n;. It is to be considered that here

. ) 0 { 1...when z is an even integer (L.11)
W, =Wy = W =01, = , ' )
? p0 P fset 2—mn,...when z is an odd integer

Using the zero boundary conditions we obtain from (1.7) and (1.10) the formulae

wit) = [B(p— 1)—a,;—6(un) " *1c*/4
(1.12)
W) = api'fz/zi O<t<)

Just as in the case of an infinitely long shell, the bending moment in each span is a
cubic function of ¢, hence, to satisfy the conditions (— 1 < m(&, 7) < 1) it is necessary to
satisfy the inequalities

m'(0,7) > 0; qg(t) =0 (1.13)
m'(¢;+0,7) < 0. (1.14)
These conditions will hold if the load p satisfies the inequalities

pi» < p < pf (1.15)
p¥ = 1+6u'2{ﬂ.~?2+ Y [(2_,,k,)—2_;7,;.2]} (1.16)
k=1

where . (k = 1,2,...,i) is calculated from the system (1.8) at p = p}¥ and #;, = n,.
i=12,...,5.

As all reinforcing rings are identical and equidistant from one another, it is intuitively
clear that at least during the loading we have w,; > W,,_, (this suggestion will be checked
later numerically). Then from (1.8) it follows that n, > 1 (i=1,2,...,5), ie. the plastic
hinges of the circumference are shifted from the middle of each span towards the nearest
support. Then from (1.16) it follows that p¥ , < p¥, so the violation of the condition
—1 < m(é, t) < 1 (the appearance of a plastic zone) is first possible in the span adjoining
the shell support. The span having one immobile support is more rigid in comparison
with the others and as a result the accepted assumption w,; > W, is indirectly confirmed
by the results obtained in part I. Indeed, as it is shown there, in case of movable supports
the load required for the appearance of a plastic zone is greater than the corresponding
load for immobile supports.
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Since pf | < pf, to fulfil the condition (—1 < m < 1) for all spans of the shell it is
sufficient for the load p to satisfy the inequalities

Pie < p < pt = 1+46/p*2—ny) (1.17)

When p > p¥ the inequalities (1.14) are violated in the span which adjoins the support.

After the load has been removed (t > 1) the shell moves under its own momentum,
and the plastic ring hinges shift towards the middle of the span. Functions n(t), w{t)
and w,{(t)(i = 1,2,...,s) are determined from the following system of 35 second order
differential equations

A1) = [(W,i+ 20, + 37 + 67 2] 20,08, — W,)] 7
Wity = — {407 (1 +a0)+ [1 =6/l n2— 1 DJQ +1i— s D HAA0L ™ + 240 — 100 )1
Wit) = — {1 2=n)[2—n) b —W,) 0¥~ ¢ +3)+’1i(Wi_Wpi—1)(Wpi+3)]+6#_2
X [0 — W)+ (2 = ) (W, — Wi - )1}H{202 — ) [ OB — W 1)
+Q2=n) =)} (1< T < 1) (1.18)

These equations are obtained by integrating the equation (1.1) with respect to £ in each
link using (1.2), (1.3}, (1.4}, (1.6) and (1.9). Here p = 0.

If z is even the displacement in the middle of the shell is determined by integrating the
equation

Wopy = _(wps+3pM)/2; Pum = 1+2/H2

The system (1.18) with (1.11) taken into account is numerically integrated at any value
of s by the Runge—Kutta method. The required Ss initial conditions at ¢ = 1 are calculated
from (1.8), (1.10) and (1.12) and have the form

1) = nos; wyll) = w,{1)/2 =a,/2
wil) = w(1)/2 = [3p—D—a,—6(uno) *1/4  (i=12,...,9).
The condition imposed on the velocity,
wé, 1) =0, (1.20}

determines the upper limit of the integration segment of system (1.18)

(1.19)

7T £ 7o = max 1f; (i=12,...,5 (1.21)

The motion time of the rings adjoining the given span is in the general case different
and at the instant that both ends of the span become motionless the plastic ring circum-
ference in this span inevitably reaches its middle, This is the consequence of neglecting the
geometrical changes of the shell in its motion because in this case (after both rings stop)
the span behaves like a smooth shell with motionless supports. Therefore, if by the time
moment t§; k, the rings have stopped their motion, the further integration of system
(1.18) leaves 3(s— k) + 2 equations (k > 2) if there is no extreme ring among those that have
stopped moving, and 3(s— k) equations (k > 1) if among these there is an extreme one.

Since the rings are identical and equidistant from each other, their different dynamic
behaviour is due only to their different distances from a support. Hence, it is assumed that
there are no moving rings among these which ended their movement and vice versa of
the considered half of a shell.
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The generalized stress ¢, is determined by expression (1.5), for m(&, t) we have
BB 3+EN+Col—1...0 <& <&y
m(&,7) =3 WIB (& — O B+, + DEI+ATE+B .. (G << &)
P E—C VP B+ 00, + DEN+ATEH BT (G < E< &y
Co = ~ {1*2—n ) [Bo2—n1)+31-6}/32—1n,);

A = {ﬂziﬁi_ng_3(ﬁ}pi+ 1)(255'*"797?&-6}/3'?5;
B = —[A7 & + (s PO+ D+ 1]: (1.22)
Ai+ = *{ﬂz(z—ﬂi+1)[ﬂi+(2‘*’7i+ 1)2+3(Wpi+1)(§i+1+€i+)]"6}/3(2“’1i+1)2

B = —[ATE +(E Rt D H1]: fo = D@,

d d
B = a‘%[(wi_ﬁ’pe)/??ih ﬁf = a;[(wsﬂ —'wpi)/(z_??i-i- s

The motion considered in the second phase (1 < 1 < 1,) would hold if inequalities
(1.13), (1.14) and y < 1 (see inequality 1.9 in part I [1]) were satisfied in all spans of the
shell. It can readily be seen that the solution (1.22) holds when only one inequality is true:

m(©0,7) >0 (1.23)
when all rings are moving, and inequality
m' (& +0,7) >0 (1.24)

when k rings have stopped moving, It is supposed that rings completing their motions
are counted beginning from a support. Inequalities (1.23) and (1.24) are obviously satisfied
if

Hy < p < min(y/6, ), (1.25)

where u, is defined by the formula (1.14) of part L

For each span we shall call the third phase of motion the interval t§; < 7 < ¢, from
the moment tZ; of the full stop of the span ends to the moment 13; of the full stop of the
faces of the span. For each span t3; and 1%; are expected to be different from each other.

The solution of the problem in the third motion phase for each span is obtained just
as for the shell with motionless supports [2] but as initial conditions we must use those for
displacements and displacement velocities at the time moment 7 = 1§;.

The maximal residual displacements in each span is obviously reached in the middle
and is determined by the formula

WET—1,78) = WET 1, T8)+WAHET — 1, 78)/3py. (1.26)

2. THE CASE OF “OVERAGE” LOADS

Here, as in Section 1, we consider the dynamic behaviour of shells of finite length with
the parameter y in the interval (1.25).
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In accordance with what is laid down in Section 1, for loads slightly exceeding the
load p% the plasticity conditions (1.14) will first be violated in the first span. Therefore
under such loads at the point with the coordinate £, = 2—#,. a plastic zone (with regime B,
Fig. 2) is formed while in all the other spans the regime AB is maintained. The field of
velocities will evidently be determined by formulae (1.3) for i = 2,3,...,s, while for the
first span we shall have the formulae

Wo18/€01---(0 < & < &oy)
W 1) =9 (—1)...(¢ < ¢ < &gy)
Woi (W =W, (€T —Enr ... (&o1 S €< 2)
Wwo1(t) = W(E51, 7). 21

-l [o] +|

FiG. 2.

Here &g, and &g, are the boundaries of the plastic zone in the first span. The displace-
ment velocity w(&, 1) on the segment &5, < & < £, is obtained by integration of the
equation (1.1) with respect to time at m(&, 7) = 1 and at the zero initial conditions. In the
first span, instead of conditions (1.4), (1.6) and (1.14) we shall have

m(&gy +0,1) = m(&5,+0,7) = 1 (2.2)
m'(&5,+0,7) = m(&5, +0,7) =0 (2.3)
m'(£5,£0,1) <0; m'(é5;+0,7) < 0. (2.4)

When 0 < © < 1 the relations (1.5)+1.8), (1.10){1.12) are maintained for all spans, except
the first (the expression for ¢, is also valid for the first span). For the first span from (1.1)
and (1.2), taking into consideration (1.4), (1.9), (2.1}~(2.3), we shall have

mé, 1) = 1-2(1—y/yo)®;s W,y =a, =p—1-6(un)"%;
[((p~1)yr*/2y0...(0 < & < &oy)
w(é, 1) =4 (p—1)7%/2... (Lo < & < &gy
(8,1 +6y/?ya)/2... (&5 < €< 2)
¢ $o1.-- 0= ¢ <&50)
y=911,Y =41 ...y <& < &Gy)
2-¢ n ... (&g <¢E<2)
Eor = [6/p—DPu™'s  ny =2~¢&5,
64(uny) 2 —(p—D(A—1D)—ao+3{2n, + [} +2=1)"1Q2—n,) '} 2ubn} = 0. (2.6)

(2.5)
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Inequalities (1.13) and (2.4) are satisfied, but for (1.14) to be true we require
p<pi* = 1+a,,1+6u“2{n,-12+ Y 2= P =1 ]} (2.7)
k=2

where n.(k = 2,3,...,i) are calculated from the system (1.8) at p = p¥* and »; = 1,
with the first equation replaced by (2.6). Since all . > 1, the smallest value of p¥* is
obviously achieved at i = .2 i.e. (2.7) must be replaced by the more strict inequality

2—’7’2* S rllt (28)

Evidently, inequality (2.8) would be violated when the increase in the load p increases
and #,. and 75,. become equal to 1. Then, substituting #,. = n,. = 1 into equation (2.6)
we shall obtain the upper boundary of the load

pF<p<p, (2.9)

permissible in the case. Here p, is determined from the formula (2.11) of part I [1].

It can readily be checked, by use of the recurrence formula (1.8) and taking into account
(1.10) and (1.11), that the load p determines a dynamic state of the shell in the first phase
(0 < t < 1) of its motion when all ; = 1.

After the load is removed, the size of the plastic zone formed in the first span is reduced
to zero. The corresponding time 1, is determined from the equation

é(;l(r*)-i_ ’71(‘[*) = 2 (210)

In the time interval 1 < 1 < 7, the plastic ring circumferences {3, and &(i = 2,3,...,5)
move from the middle of the span towards the nearest support. The unknown functions
n{1), w{t) and w,{7) can be found in the interval 1 < t < 7, by using the system (1.18)
again, while the functions &g,(1), W& (7), 71,(r) and W, (1) are determined in a similar way,
just as in the first phase of the motion considered at this point, and have the form

Et) = [6tp—) Pt W) =p-1;...(1 L1 <1, (2.11)

iy = 01 {3la+n +niQ2—n*) "1+ 201 (A — 1 — ap)} f6ra(l < T < 1,);
a=40u" " +2+n,—1n, (2.12)
W,y (1) = p—t—6tun) ... (1 £ 1< 1,) (2.13)

The stress t, has the form (1.5) and m(¢, 7) is determined by the same cubic polynomial
from ¢ as is (1.22), but with other coefficients which also depend on time.

The necessary plasticity conditions at loads (2.9) would be satisfied if u satisfies the
inequality (1.25).

From equation (2.10), taking into account (2.11) and (1.17), we obtain

« = P/PT-

It is assumed here that #,(z,) = n,. where 7,, determined the position of the plastic ring
circumference in the first span at p = p¥}. In each concrete problem this assumption can be
checked numerically.

The further motion of the shellat 7, < 7 < r,, is described by the scheme of Section 1

over the time interval 1 < t < 7%,. In this case it is necessary to use the initial conditions
at T = 1,.
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3. THE CASE OF “HIGH” LOADS

Let us consider the dynamic behaviour of the shell under the loads (3.1) of part 1.
In this case the dynamic behaviour of all the links of the shell whose parameter satisfies
inequality (1.25) to the time moment T = t, = p/p, cf. formula (3.10) of part I would be
the same as in' an infinitely long shell, and the motion of the segment (0 < & < &g,) is
determined by the solutions (24), (25) [2].

At T > 1, the motion proceeds in a way similar to that described in Section 2 only
instead of the initial conditions at T = 1, the corresponding initial conditions at t = 1,
must be used. ‘

It should be noted that by the time moment ¢ = 1, the plastic zone reduces to a
point just in the middle of each span except the first one. In the first span the zone still
exists, the coordinate of its boundary near the support being determined at the time
moment T = 7, by the expression

Eor(Ty) = [6(p,— 1)~ 1JHp~!

and the far boundary being also located in the middle of the span. As the motion continues
the plastic zone reduces to zero.
But if the parameter u satisfies the inequality

w>p <./6 (3.1)

the behaviour of all shell links over the entire period of motion would be the same as that
of an infinitely long shell, while the behaviour of the section (0 < & < 1) coincides with
that described in [2]. In this case the maximum residual displacements in all spans are
equal and are determined by the formulaes (3.14) and (5.5) of part I [1].

If the parameter u satisfies the inequality

u>py > /6

then, as in [2], after the load is removed a plastic zone is formed in the shell near the
support, which increases starting from zero and where there is no motion (regime 4D).
After 7 = 1, [cf. the formula (3.10) of part I] a similar situation is observed near each
ring. Just as at p from (3.1), in this case all rings stop at the same time t = 74, and the
plastic zone boundaries in each span, except the first one are at this instant equidistant
from the middle of the span. As the motion proceeds with the motionless rings, it will
coincide with [2] in all spans but the first one. The dynamic behaviour of the first span can
be analyzed on an example of a smooth edge-clamped shell with one rib in the middle.
Similarly, when

max(,/6, u,) < u < p,

after the load is taken off near the support there appears a zone in the shell where is no
motion. But in this case the motion of the remaining part of the shell proceeds in accordance
with the amount of the load both in the presence of the plastic zone and that of plastic
hinges.

The results of the calculation performed by the electronic computer M-20 are listed
below in Tables 1-6. The calculation was performed with the following geometric and
plastic parameters of the shell fixed u = 2, a; = 9, 8 = 0-25; the face and ribs are sup-
posed to be of one material (A = 10). When the parameters y, a, and 0 take other values,
the relations we get are identical to that of Tables 1-6 and hence are not given here.
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TABLE |
z=5 z=13 z = |
Load p
m 2 3 h i h
P = 1.6000 1-000000 1.000000 1-000000 1-000000 1-000000 1-000000
1-8200 1012869 1-000135 1-000004 1012869 1-000115 1-012868
2-0500 1-026396 1000348 1000005 1-026396 1-000343 1026392
22700 1-039378 1000376 1-000006 1-039378 1000372 1039250
2-49 1052377 1-000399 1-000008 1-052368 1-:000402 1052358
z=135 2-719122 1-065902 1000345 1000012 e R -~
z=3 p¥ ={2-719IO6 o - e 1-065901 1.000516 e
z=1 2:718503 e — — — o 1065703
2.7700 1053047 1-000090 1000009 1053042 1000089 1053040
2-8600 1-031349 1000033 1000000 1031229 1000028 1031200
P, = 3-0000 1-000000 1-000000 1-000000 1-000000 1-000000 1-000000
3-5000 0906347 0906347 0906347 0906347 0-906347 0-906347
4-0000 0-833333 0-833333 0-833333 0-833333 0833333 0-833333
50000 0-725880 0-725880 0-725880 0725880 0-725880 0-725880

Table 1 illustrates the behaviour of #; = n(p) in the first phase of the motion for values
of zequal to 5, 3 and 1. The functions n{p) are increasing with increasing p, in the interval
pi+ < p < pt, up to maximum values at p = pf. When p > p¥ all functions 5,(p) are de-
creasing ; when p = p, all #; are equal to unity. In this manner the earlier accepted hypo-
thesis is confirmed that in the first phase of the motion we have W, > w;_,. It is worth
noting also that 5,{p) in practice does not depend on z and that for each z all 5; except #,
may be put equal to unity with a sufficient degree of accuracy.

In the Tables 2 and 3 the functions n(t) are listed for z = 3and z = 1 for “low” p = 249
and “high” p = 400 loads. All functions #,(t) are decreasing functions of time when a given
load is “low”; when the load is “high”—all are increasing up to the time 7 = 7, and
for t > 1,,n,r)are decreasing. This behaviour numerically confirms the formula t, = p/pf,

TABLE 2

Time 7 z=3 z=1

M 2 M1

1.00 1052368  1.000402  1.052358

1-05 1043356  1.000391 1043117

110 1034243 1000380 1034055

115 1.025001 1000353  1.024887

1.20 1-:015644  1.000301 1-015602

125 1006152 1000281 1-006003

1-30 0996506 1000253 0996412

135 0986686  1.000210 0986417

1-40 0976666  1.000146  (-976555

145 0966409  1.000111 0966308

1.50 0955863  1.000058 0955719

w8, =k, = 1.55 0944946  LOOODOS  0.944981
k= 1-56 — — 0944876
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TABLE 3
p =400
Time 1 z=13 z=1
ny N2 i

100 0.833333 0-833333 0-833333

1-10 0986173 0986173 0986173

1.20 1.003997 1.000175 1.003815

130 1.021188 1.000296 1.021063

Te3 = 1-470 1065901 1000516 1065684
T = 1472 1.064873 1.000494 1.065702
1-60 1-047618 1-000452 1-046916

1-70 1032317 1.000403 1-032001

1-80 1.021109 1-000351 1.020916

1-90 1-009211 1-000302 1-009010

2.00 1.000334 1-000259 1.000298

2-10 0992406 1-000208 0991309

2:20 0971785 1-000161 0970986

2:30 0952305 1.000109 0951978

1§, = 1%, = 247 0942832 1.000054 0942816
T8, =249 — — 0941899

which is reflecting the fact of vanishing of the plastic zone in the first span, when 7 = 1.
Note that at the time t = 1, the plastic zone reduces to a point just in that section of the
span where it first may appear when a lower load is applied. The time of the motion is
the same for all rings in the case (with the exactness of the integration’s step, taken up
equal in the problem Az = 0-01). We must note that by Tables 2 and 3 we have till the end

TABLE 4
p =249
. Infinitely
Time 1 z=13 z=1 long shell
wy w, w, w
1-00 0-6793 0-6698 06799 0-6630
1.05 0-7680 07278 0-7692 0-7268
1-10 0-8310 0-7875 0-8319 0-7858
1-15 0-8887 0-8422 0-8897 0-8398
120 09413 0-8921 09423 0-8882
1-25 09886 09370 09902 09331
1-30 10375 09770 1-0397 09724
1-35 10668 1.0121 1.0689 1.0068
1-40 1-0992 1.0373 1-1008 1.0362
1-45 1-1256 1.0636 11273 10608
1-50 1-1467 1-0823 1-1484 1.0804
1.55 1-1626 1-0970 1-1639 1.0951
1-56 1-1638 1-0984 1.1643 1.0959
1-60 11788 1.1043 1-1804 1.1062
9, = 1.66;19, = 1-65 1-1816 1-1208 — —
9, = 1.66 — — 1.1845 11088
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TABLE §
p =400
. -~ Y- Infinitely
Time 1 z=3 z=1 long shell
wy wy wy w
100 1-6217 1-5016 1-6229 1-5000

110 19611 1-7992 19627 17950
120 2:2443 2.0881 2:2461 20800
130 2.5274 2.3602 2-5288 23550
1470 3-1781 2.8043 29597 2.7905
2-8056 29640 27953
1-60 3-3045 3-0889 32203 3-0857
170 3-5420 3.2943 3.4267 3-2900
1-80 37518 34794 3.5617 3-4749
190 39365 3-6449 37376 36401
2.00 4.0743 3-7897 3-8224 37855
210 4.1927 39151 39560 39114
2:20 4-3429 4.0283 39927 40175
2:30 44247 41177 40424 41041
=247 4.5168 42178 40914 42062
= 249 45186 42193 41047 42145
2:60 45379 42375 41804 42283
79 = 269; 1%, = 267 44812 42542 e
%, = 2:69 — — 4.4857 -

o
=
~J
(53
@
3
NS
£

Tuy

of the motion 1, =~ 1 while 5, # 1. As the change of geometry was neglected the move-
ment is further impossible at 5, # 1; so n; was put equal to unity while we considered
the further movement; i.e. it was assumed that the first type jump of the function n(t)
holds at the instant that the ring stops by the 6-7 per cent of magnitude.

It is natural to consider, cetera paribus, that the different dynamic behaviour of links
with rings of limited rigidity of the infinitely long shell and the shell of finite length is

TABLE 6
s =3 =1 Infinitely
- o long shell
Load p
wy w, Wi w

ppe= 16000 00800 00800 00800 00800
18200 02874 02703 02888 02688
20500 05481 05186 05509 05122
22700 08465 07911 0-8486  0-7892
24900  1.1816 1-1208 1-1845 1-1088

. 27191 16021 1-4901 — 144878

Pi= 27185 — — 1.5889 1-4865
28600  1.8785 1.7498 1.8812 17437
30000 21716 20212 21739 20157
35000 32503 30397 32529 30336
40000 44812 42542 44857 42480
50000  7-8314 72719  7-8355  7-2625
7 165748 157841 165886 156345

/]
—2
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due to the magnitude of the shift of ; from unity. Hence we must expect (by Tables 1-3)
the maximum residual displacements of each span, in the limits of the assumptions to be
slightly different from those of an infinitely long shell. This is true for all spans except
extremes and for these is the maximum residual displacements coinciding with those of a
shell with one ring in the middle (z = 1). Numerical results listed in the Tables 4-6 con-
firm the statement.

In the Tables 4 and 5 maximum displacements are listed as functions of time, corres-
pondingly to “low” p = 2:49 and “‘high” p = 4.00 loads. The time of stop of the skin-
plating 19, and 19, are not equal. The difference is implied by the jump of 5,(z) at the stop-
time of the ring. In Table 6 maximum residual displacements are listed in dependence of
the load p.

It is seen from Tables 4-6 that maximum displacements of non extreme spans are
exceeding by 6-8 per cent those of intrinsic spans.

Remember that in part I of this work [1] it was shown that maximum residual displace-
ments of a shell with identical movable supports are less (though very slightly) than
those of a shell with a fixed support. An analogous situation holds in this case. Extreme
spans correspond to the case of shells having one movable and one fixed edge. The per-
centage difference is greater in this case than that for shells with symmetrically fixed edges.

So numerical calculations show that maximum residual displacements in all spans
of a shell of finite length, except extremes in practice coincide with those of an infinitely
long shell; in the extremes with a maximum residual displacement of a shell with one ring
in the middle.

REFERENCES

[1]1 Y. V. NeMirovsKY and V. N. MazaLov, Dynamic behaviour of cylindrical shells strengthened with ring
ribs—I. Infinitely long shell. Int. J. Solids Struct. 5, 817-832 (1969).
{2] P. G. HODGE, Impact pressure loading of rigid—plastic cylindrical shells. J. Mech. Phys. Solids 3, (1955).

(Received 9 September 1969)

A6crpakt—Kpyroeas mwmHapudeckass o60yi0uka, MOAKPENNEHHAas PAaBHOOTCTOSIIUMMH IPYr OT Apyra
KONBLUEBBIMA PeOpaMu OrpaHMYEHHOM XECTKOCTM U 3alIEMNEHHAs IO XpasM, NMoABepkKeHa NeHCTBHIO
MMITyTbCHBHOM Harpy3ku. McxonHble NpeANONOKeHUA MAEHTHYHBI NPUHATHIM B YacTd 1 [1].

Taxk kax Ipu HOCTATOYHO OOJBLIOH 4AacTOTe pacrosioxeHus pebep pelueHHe 3aQadMu NOJIYYaeTCca K3
pemennii, HaiineHusixX B yacTy I [1], myTeM yka3aHHbIX TaM B IIyHKTe 6 riepeoBo3HAUEHRI, TO HUKE CHUTAET-
cs1, 4TO KOJBLA pacronexeHsl ‘‘peaxo’’. Uccrnepyrotcst cnyvau ‘HUM3kux’’, ‘‘cpenuux’ u ‘‘BbICOKMX’’
Harpy3ox, [JIA KaXZOTo ciy4as BeIIMCAHBI AubpepeHLranbible YpaBHEHUST OBUXEHHS B BUIE, YIO0BHOM
I MHTerpupoBanusa Ha JLBM.

Benencraue HEOAMHAKOBOCTH PACTIONOXKEHUS TIPOJIETOB OT Kpaes 060/104KH SUHAMMYECKOE TTOBEIEHHE
HX, BooOllue roBOps, ABIAETCA pa3MMYHBIM. OAHAKO, HA KOHKPETHLIX TIPUMEPaX YHUCACHHBIM TyTeM
TOXa3bIBAETCA, YTO IPH NMPOYUX PABHBIX YCIIOBUAX C AOCTATOYHONM CTENEHbIO TOYHOCTH 'MOXHO CYMTATh
NIOBEOEHHE BCEX MPOETOB, KPOME KpalHMX, TAKUM Xeé KaK U B O6eCKOHEUHO IIMHHON 060JI0YKe, 4 IBUXEHHE
KpalHUX MPOJIETOB MOXHO NMPOAHANMIUPOBATL HA MPUMEPE 3aLIEMJIEHHOM 110 KpasM O0BOI0YKK C ONHMM
KOJIBLIOM B cepenuHe, JInd napamerpa p B UHTEPBANE o = py < 4/6 3TOT (akT NOATBEPKAAETCH aHATTUTH-
YeCKHd.



