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THE DYNAMIC BEHAVIOUR OF CYLINDRICAL SHELLS
REINFORCED BY RING RIBS-II.

SHELLS OF FINITE LENGTH

V. N. MAZALOV and Y. V. NEMIROVSKY

Institute of Hydrodynamics, The Siberian Branch of the USSR Academy of Sciences, Novosibirsk

Abstract-A circular cylindrical shell reinforced by ribs of limited rigidity and equidistant from each other,
clamped by the edges, is under the action of an impulsive load. The basic assumptions are identical to those of
part I [I).

When the ribs are placed rather frequently the solution to the problem is obtained from those obtained in
part I [1) by a change of notation, so we consider below that the ribs are placed "sparsely". The cases of "small",
"medium" and "large" loads are investigated; the differential equations of motion are listed in a form suit­
able for numerical integration by an electronic computer for every case. As the distance of the spans from the
shell's edges varies the dynamical behaviour of the spans is generally different. It is shown by numerical cal­
culation of some concrete examples that cetera paribus with sufficient accuracy we may consider the dynamic
behaviour of all spans, except extreme ones, identical to that of an infinitely long shell, and the extreme spans
moment can be analysed by means of the example of a shell clamped by the edges with one ring in the middle.
For the values of the parameter /l. satisfying /l. ~ III :s; ,)6 this is confirmed analytically.
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the length of a span, the radius of the middle surface, the thickness of a shell wall, respectively
the turning force per unit of length carried by a facing
the height and the breadth of a rib, respectively
the bending moment per unit of the circumference of the middle surface
the radial displacement
the uniformly distributed pressure
the duration of pulse action
the surface density of the material of a facing and ribs, respectively
the coordinate on the generatrix
the time
the yield limit for stretching-pressing the facing and the ribs, respectively
the specific weight of a facing and ribs, respectively
the general number of rings of a shell

INTRODUCTION

THE analysis of the dynamic behaviour of an infinitely long reinforced shell carried out
in part I [1] was greatly simplified because it was only necessary to consider the behaviour
of one span, or, to be more precise, one half of it (due to symmetry).

The situation becomes much more complicated for a shell of a finite length when the
shearing forces qi± (i = 1,2, ... z), which, as will be shown below, are far from coinciding
with each other, depend on the ordinal number of the rib. Therefore the dynamic behaviour
of different links of the shell is different and it becomes necessary to study their interaction
during the motion.

111



112 v. N. MAZALOV and Y. V. NEMIROVSKY

In this paper the pecularities are investigated of the dynamic behaviour of cylindrical
shells offinite length reinforced by rings. The discussion is based on the hypotheses accepted
in part I. For definiteness the boundary conditions are used corresponding to the clamping
of the edges.

When ribs are placed frequently enough and their rigidity is comparatively low the
solution of the problem can be determined from the solutions obtained in part I by means
of the interpretations indicated in Section 6. In this paper the rings are assumed to be
placed "sparsely" and to have large but finite rigidity.

1. THE CASE OF "LOW" LOADS

We place the origin of coordinates on the left support (Fig. 1) and we direct the x-axis
along the generatrix and the displacements axis Walong the internal normal to the middle
surface of the shell. Since the case discussed in the sequel pertains to "sparsely" placed
rings of comparatively large rigidity, the dynamic motion of the shell has the form shown

FIG. I.

in Fig. 1. Let us call a link a part of the shell which encloses a rib and is bounded by the
two rings of plastic deformation nearest to the rib. The equation of motion of a link, e.g.,
for the i-th, can be written in the form (cf. part I [1])

(1.1)

(1.2)

Here the prime denotes the derivative with respect to the non-dimensional coordinate
e= x/i and a dot-with respect to the nondimensionless time r = t/to.

Due to the symmetry of the problem only half of the length of the shell is considered;
hence

{
z/2, when z is an even integer

s = (z + 1)/2, when z is an odd integer

Just as in part I we consider further the shells with f1. ;?: f1.*, where f1.* is determined by
the formula (1.5) of part I. Then at the loads P ~ P1* [Pl' is defined there by the formula
(1.13)] the rings remain motionless and the corresponding motion of the shell spans is
investigated in [2]. Therefore we shall further discuss the case of P ;?: Pl'.
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(1.3)

For loads slightly exceeding Pl. we have the following velocity fields (regime AB in
Fig. 2)

{
Wl~/~l'''(O ~ ~ ~ ~1)

w(~, 't) = Wpi+(Wi - Wpi)(~i- -~)/(~i- -~i)'" (~i ~ ~ ~ ~n

Wpi+(Wi+l-Wpi)(~-~n/(~i+l-~n ... (~t ~ ~ ~ ~i+l)

Wi = W(~i,r); Wpi = w(a,'t) (i = 1,2, ... ,s).

Here ~i is the coordinate of the plastic ring hinge of the i-th span, ~i and ~t are the
coordinates of the left and the right rims of the same (the i-th) rib. The ordinal number
of the ring is considered to coincide with that of the span if the ring is on the right of the
span and is one unit greater if the ring is on the left of the span. Substituting (1.3) into (1.1)
we obtain after integration of the obtained equation with the boundary conditions

(1.4)

the following field of generalized stresses at (0 ~ r ~ 1)

j12[Wl~3/3(2-f/l)-(p-1)~2]+Co~-1 ... (0 ~ ~ ~ ~1)

j12[(Wi-Wpi)(~i - ~)3/3f/i+(Wpi+ 1-p)~2]+Ai ~+Bi ... (~i ~ ~ ~ ~n
m(~, r) =

j12[(Wi+ 1- Wpi)(~ - ~n3/3(2- f/i+ 1)+ (Wpi +1- p)~2]+At ~ +Bt ...

(~t ~ ~ ~ ~i+ 1)

{
-l"'(~i~l ~ ~ ~ ~i-)

t2 =
-(1+aO)"'(~i- 5 ~ ~ ~n (1.5)

Co = -{j12(2-f/lf[wl -3(p-1)]-6}/3(2-f/l);

A i- = {j12f/i[f/i(Wi - wpi)- 3(Wpi +1- P)(~i+~n] - 6}/3f/i;

Bi- = - [A i- ~i- +(j1~i- f(wpi +1-p)+ 1];

At = - {j12(2-f/i+l)[(Wi+ 1 -wpi)(2-f/i+ 1)+3(wpi + 1-p)(~i+ 1 +~n]-6}/3(2-f/i+ 1);

Bt = -[A(~(+(j1~n2(wpi+1-p)+1];

f/i = ~i - ~i; (i = 1,2, ... , s).

Here the plastic ring hinges are assumed to be stationary during the action of the load
which is described as a rectangular impulse.

In the plastic ring hinges the moment achieves its maximum, therefore

m'(~i-O, r) = m'(~i+O, r) = O.

Using (1.6), we obtain from (1.5)

j12(2-11i)2[Wpi _ 1+2wi -3(p-1)] +6 = 0

j12f/f[wpi+2wi-3(p-1)]+6 = 0,

whence we obtain the recurrent formula

(1.6)

(1.7)

(i = 1,2, ... , s). (1.8)
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On the other hand, from equation (1.2) we obtain by applying certain relations (cf. for­
mulae (1.2) in part I)

q/ =mf(~/+0,r)/21l8, (i= 1,2, ... ,s) (1.9)

and from (1.5) it follows that

api == wpi = {481l-I(p-1-ao)+ [p-l +6/1l211;(2-11i+ I)J(2+l1i-l1i+ I)}

x (4.?c81l- 1+2+l1i-l1i+ 1)- I. (1.10)

Formulae (1.8) and (1.10) give all in all s algebraic equations for s unknown values of
l1i' It is to be considered that here

{
1 ... when z is an even integer

wpo == wpo == wpo == 0; I1s+1 = 2-l1s'" when z is an odd integer (1.11)

Using the zero boundary conditions we obtain from (1. 7) and (1.10) the formulae

wi(r) = [3(p - 1) - api - 6(J.LIJi)- 2Jr2/4
(1.12)

(0 ::; r ::; 1).

Just as in the case of an infinitely long shell, the bending moment in each span is a
cubic function of ~, hence, to satisfy the conditions (- 1 ::; m(~, r) ::; 1) it is necessary to
satisfy the inequalities

m'(O, r) :?: 0;

mff(~;±0, r) ::; O.

These conditions will hold if the load p satisfies the inequalities

PI' ::; p ::; pf

(1.13)

(1.14)

(1.15)

(1.16)

where 11k' (k = 1,2, ... , i) is calculated from the system (1.8) at p = pf and l1i = l1i'
(i=1,2, ... ,s).

As all reinforcing rings are identical and equidistant from one another, it is intuitively
clear that at least d~ring the loading we have Wpi :?: Wpi- 1 (this suggestion will be checked
later numerically). Then from (1.8) it follows that l1i :?: 1 (i = 1,2, ... , s), i.e. the plastic
hinges of the circumference are shifted from the middle of each span towards the nearest
support. Then from (1.16) it follows that pf- 1 ::; pf, so the violation of the condition
-1 ::; m(~, r) ::; 1 (the appearance of a plastic zone) is first possible in the span adjoining
the shell support. The span having one immobile support is more rigid in comparison
with the others and as a result the accepted assumption wpi :?: wpi - 1 is indirectly confirmed
by the results obtained in part 1. Indeed, as it is shown there, in case of movable supports
the load required for the appearance of a plastic zone is greater than the corresponding
load for immobile supports.
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(1.19)

Since pi- t ::; pi, to fulfil the condition (- 1 ::; m ::; 1) for all spans of the shell it is
sufficient for the load P to satisfy the inequalities

Pt.::; P::; p! = 1+6/ji2(2- 11t.)2 (1.17)

When P > p! the inequalities (1.14) are violated in the span which adjoins the support.
After the load has been removed (t ~ 1) the shell moves under its own momentum,

and the plastic ring hinges shift towards the middle of the span. Functions '1;(t), w;(t)
and wp;(t)(i = 1,2, ... , s) are determined from the following system of 3s second order
differential equations

~;(t) = [(wpi +2w;+ 3)'1; +6ji- 2J[2'1;(w;- Wp;)]- 1 ;

Wp;(t) = - {40ji-1(1 +ao)+ [1- 6/ji2flJ2 - fli+ dJ(2 +fl; - fli+ 1)}(4AOji-1 +2 +fl;-fli+ 1)-1 ;

wi(t) = - {'1i(2- '1;)[(2 - '1;)(Wi- Wp;)(Wpi_ t +3)+fl;(w;- wp;_t)(wp;+ 3)J +6ji- 2

x [fli(Wi - Wp;)+(2 -fli)(W;- Wp;-t)]} {2fli(2 - fli)['1i(Wi - Wpi-1)

+(2-'1;)(w;-Wp;)]}-t ... (1 ::; r::; 'to). (1.18)

These equations are obtained by integrating the equation (1.1) with respect to ~ in each
link using (1.2),(1.3),(1.4),(1.6) and (1.9). Here P == O.

If z is even the displacement in the middle of the shell is determined by integrating the
equation

ws+ 1 = -(Wps +3PM)/2; PM = 1+2/ji2.

The system (1.18) with (1.11) taken into account is numerically integrated at any value
of s by the Runge-Kutta method. The required 5s initial conditions at r = 1 are calculated
from (1.8), (1.10) and (1.12) and have the form

fli(1) = '10i; Wp;(1) = Wp;(1)/2 = api/2

wi(l) = w;(1)/2 [3(p-1)-ap;-6(jiflor 2J/4 (i = 1,2, ... ,s).

The condition imposed on the velocity,

W(~, r) ~ 0,

determines the upper limit of the integration segment of system (1.18)

(1.20)

(i = 1,2, ... , s). (1.21)

The motion time of the rings adjoining the given span is in the general case different
and at the instant that both ends of the span become motionless the plastic ring circum­
ference in this span inevitably reaches its middle. This is the consequence of neglecting the
geometrical changes of the shell in its motion because in this case (after both rings stop)
the span behaves like a smooth shell with motionless supports. Therefore, if by the time
moment r~k k, the rings have stopped their motion, the further integration of system
(1.18) leaves 3(s-k)+2 equations (k ~ 2) if there is no extreme ring among those that have
stopped moving, and 3(s-k) equations (k 2:: 1) if among these there is an extreme one.

Since the rings are identical and equidistant from each other, their different dynamic
behaviour is due only to their different distances from a support Hence, it is assumed that
there are no moving rings among these which ended their movement and vice versa of
the considered half of a shell.
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The generalized stress tz is determined by expression (1.5), for m(~, r) we have

{

J.Lz(Po~3/3+~Z)+Co~-I ... (0 S ~ S ~1)

m(~, r) = J.Lz[fJi(~i - ~).3/3+(wpi + 1)eJ +Ai~+Bi (~j s ~ s ~n

J.LZ[N(~-~n3/3+(wpi+1)eJ+A~~+B~ (~~ s ~ S ~i+l)

Co = -{J.LZ(2-1J1)Z[Po(2-1J1)+3]-6}/3(2-1J1);

A j- = {J.LZ[Pi IJr - 3(wpi + 1)(2~i+ lJi)IJJ - 6}/3IJi;

Bi- = -[Ai~i+(J.L~i-?(wpi+l)+I]; (1.22)

At = - {J.L Z(2-lJi+ I)[Pt(2 -lJi+ I)Z +3(Wpi+ 1)(~i+ 1 +~n] - 6}/3(2-lJi+ d;

Bt = - [At ~t +(Il~tf(wpi+1)+ IJ; Po = :.rW1(2-1J1)J;

d d
Pi = dr [(Wi - Wp;)/lJi]; Pi = dr [(Wi+ 1 - Wpi)/(2 -1Ji+ 1)'

The motion considered in the second phase (l s r s ro) would hold if inequalities
(1.13), (1.14) and I/J s 1 (see inequality 1.9 in part I [IJ) were satisfied in all spans of the
shell. It can readily be seen that the solution (1.22) holds when only one inequality is true:

m'(O, r) ~ 0

when all rings are moving, and inequality

m'(~: +0, r) ~ 0

(1.23)

(1.24)

when k rings have stopped moving. It is supposed that rings completing their motions
are counted beginning from a support. Inequalities (1.23) and (1.24) are obviously satisfied
if

(1.25)

where III is defined by the formula (1.14) of part I.
For each span we shall call the third phase of motion the interval 't'~i S r S r~i from

the moment 't'~i of the full stop of the span ends to the moment T~i of the full stop of the
faces of the span. For each span r~i and T~i are expected to be different from each other.

The solution of the problem in the third motion phase for each span is obtained just
as for the shell with motionless supports [2J but as initial conditions we must use those for
displacements and displacement velocities at the time moment r = r~i'

The maximal residual displacements in each span is obviously reached in the middle
and is determined by the formula

(1.26)

2. THE CASE OF "OVERAGE" LOADS

Here, as in Section 1, we consider the dynamic behaviour of shells of finite length with
the parameter Il in the interval (1.25).
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(2.5)

(2.6)

In accordance with what is laid down in Section 1, for loads slightly exceeding the
load pT the plasticity conditions (1.14) will first be violated in the first span. Therefore
under such loads at the point with the coordinate ~* = 2 - '11* a plastic zone (with regime B,
Fig. 2) is formed while in all the other spans the regime AB is maintained. The field of
velocities will evidently be determined by formulae (1.3) for i = 2,3, ... ,S, while for the
first span we shall have the formulae

{

WOl~j~OI'" (0 ~ ~ ~ ~otl

w(~, r) = (p-1)r ... (~OI ~ ~ ~ ~tl)

wp1 +(Wtl -Wpl)(~l-~l'111 ... (~tl ~ ~ ~ 2)

w~l(r) = W(~~I' r). (2.1)

B m
+1 C

!z
I 0 +1

A -I 0

FIG. 2.

Here ~o1 and a1 are the boundaries of the plastic zone in the first span. The displace­
ment velocity W(~, r) on the segment ~OI ~ ~ ~ ~tl is obtained by integration of the
equation (1.1) with respect to time at m(~, r) = 1 and at the zero initial conditions. In the
first span, instead of conditions (1.4), (1.6) and (1.14) we shall have

m(~OI ±O, r) = m(~tl ±O, r) = 1 (2.2)

m'(~OI ±O, r) = m'(~tl ±O, r) = 0 (2.3)

m"(~OI ±O, r) ~ 0; m"(~tl ±O, r) ~ O. (2.4)

When 0 ~ r ~ 1 the relations (1.5H1.8), (1.10H1.12) are maintained for all spans, except
the first (the expression for t 2 is also valid for the first span). For the first span from (1.1)
and (1.2), taking into consideration (1.4), (1.9), (2.1H2.3), we shall have

m(~,r) = 1-2(l-yjYo)3; wp1 =apl = p-1-6(JL'11)-2;

j
(p-1)yr2j2yo· .. (0 ~ ~ ~ ~OI)

w(~, r) = (p-1)r2j2 ... (~OI ~ ~ ~ ~tl)

(ap1 +6yjJL2y6)r2j2 ... (~tl ~ ~ ~ 2)

j
~ j~OI ... (0 ~ ~ ~ Gl)

y= '11,YO= '11"'(~OI~~~~ril)

2-~ '11 ... (~ril ~ ~ ~ 2)

~OI = [6j(p-1)]1-JL-l; '11 = 2-~ril

6.A.(JL'11)- 2-(p -1)(.A.-1) - ao + 3{2'11 + ['1i +(2 - '12)2] (2 - '12)-1 }j2JL9'1i = o.
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Inequalities (1.13) and (2.4) are satisfied, but for (1.14) to be true we require

{
i }** - z - Z .. Z - Z

P S Pi = 1+ap1 +6/l '7i* + Jz [(2-'7k*) -'7k* ] , (2.7)

where '7k*(k = 2,3, ... ,i) are calculated from the system (1.8) at P = pt* and '7i = '7i*
with the first equation replaced by (2.6). Since all '7i* ~ 1, the smallest value of pt* is
obviously achieved at i = 2 i.e. (2.7) must be replaced by the more strict inequality

(2.8)

Evidently, inequality (2.8) would be violated when the increase in the load P increases
and '71* and '7z* become equal to 1. Then, substituting '71* = '7z* = 1 into equation (2.6)
we shall obtain the upper boundary of the load

(2.9)

(2.11)

(2.12)

(2.13)

permissible in the case. Here p* is determined from the formula (2.11) of part I (1].
It can readily be checked, by use of the recurrence formula (1.8) and taking into account

(1.10) and (1.11), that the load P determines a dynamic state of the shell in the first phase
(0 S r S 1) of its motion when all'7i = 1.

After the load is removed, the size of the plastic zone formed in the first span is reduced
to zero. The corresponding time r* is determined from the equation

~OI(r*)+'7I(r*) = 2. (2.10)

In the time interval 1 s r S r* the plastic ring circumferences ~;l and ~i(i = 2,3, ... , s)
move from the middle of the span towards the nearest support. The unknown functions
'7i(r), wi(r) and wpi(r) can be found in the interval 1 S r S r* by using the system (1.18)
again, while the functions ~o,(r), wJ,(r), ~,(r) and wp,(r) are determined in a similar way,
just as in the first phase of the motion considered at this point, and have the form

~o,(r) = [6r(p-r)-']t/l-'; wJ,(r) = p-r; ... (l s r S r*)

~, = '7d3[a+'7, +'7I(2-'7Z)-']+2/l6l'7I(A-l-ao)}/6ra(l s r S r*);

a = 4A6I/l-'+2+'7,-'7z

wp,(r) = p-r-6r(/l'7,)-z ... (l s r S r*).

The stress tz has the form (1.5) and m(~, r) is determined by the same cubic polynomial
from ~ as is (1.22), but with other coefficients which also depend on time.

The necessary plasticity conditions at loads (2.9) would be satisfied if /l satisfies the
inequality (1.25).

From equation (2.10), taking into account (2.11) and (1.17), we obtain

r* = plp!-

It is assumed here that '7,(r*) = '71* where 1]1+ determined the position of the plastic ring
circumference in the first span at p = pT, In each concrete problem this assumption can be
checked numerically.

The further motion of the shell at r* S r S r~ i is described by the scheme of Section 1
over the time intervall S r S r~i' In this case it is necessary to use the initial conditions
at r = r*,
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3. THE CASE OF "HIGH" LOADS

Let us consider the dynamic behaviour of the shell under the loads (3.1) of part I.
In this case the dynamic behaviou.r of all the links of the shell whose parameter satisfies
inequality (1.25) to the time moment • = .1 = p!p* cf. formula (3.10) of part I would be
the same as in' an infinitely long shell, and the motion of the segment (0 ~ ~ ~ ~od is
determined by the solutions (24), (25) [2].

At • 2:: • I the motion proceeds in a way similar to that described in Section 2 only
instead of the initial conditions at • = 1, the corresponding initial conditions at • = • I

must be used.
It should be noted that by the time moment • = • I the plastic zone reduces to a

point just in the middle of each span except the first one. In the first span the zone still
exists, the coordinate of its boundary near the support being determined at the time
moment. = • I by the expression

~OI(.I) = [6(p*_1)-I]!Ii- 1

and the far boundary being also located in the middle of the span. As the motion continues
the plastic zone reduces to zero.

But if the parameter Ii satisfies the inequality

(3.1)

the behaviour of all shell links over the entire period of motion would be the same as that
of an infinitely long shell, while the behaviour of the section (0 ~ ~ ~ 1) coincides with
that described in [2]. In this case the maximum residual displacements in all spans are
equal and are determined by the formulaes (3.14) and (5.5) of part I [1].

If the parameter Ii satisfies the inequality

Ii 2:: iii 2:: .J6

then, as in [2], after the load is removed a plastic zone is formed in the shell near the
support, which increases starting from zero and where there is no motion (regime AD).
After. = .0 [cf. the formula (3.10) of part I] a similar situation is observed near each
ring. Just as at Ii from (3.1), in this case all rings stop at the same time. = .0, and the
plastic zone boundaries in each span, except the first one are at this instant equidistant
from the middle of the span. As the motion proceeds with the motionless rings, it will
coincide with [2] in all spans but the first one. The dynamic behaviour of the first span can
be analyzed on an example of a smooth edge-clamped shell with one rib in the middle.

Similarly, when
max(.J6, Ii*) ~ Ii ~ iii

after the load is taken off near the support there appears a zone in the shell where is no
motion. But in this case the motion of the remaining part of the shell proceeds in accordance
with the amount of the load both 'in the presence of the plastic zone and that of plastic
hinges. \

The results of the calculation performed by the electronic computer M-20 are listed
below in Tables 1-6. The calculation was performed with the following geometric and
plastic parameters of the shell fixed Ii = 2, ao = 9, () = 0·25; the face and ribs are sup­
posed to be of one material (A. = 10). When the parameters Ii, ao and () take other values,
the relations we get are identical to that of Tables 1--6 and hence are not given here.
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TABLE I

z = 5 z = 3 z
Load p -'---

III 112 '13 '11 112 '11

PI' = 1·6000 1·00000o 1·000000 (.00000o 1·000000 1·000000 1·000000
1·8200 1·012869 1·000135 1·000004 1·012869 1·000115 1·012868
2·0500 1·026396 1·000348 1·000005 1·026396 1·000343 1·026392
2·2700 (·039378 1·000376 1·000006 1·039378 1·000372 1·039250
2·49 1·052377 1·000399 1·000008 1·052368 1·000402 1·052358

z = 5 { 2·719122 1·065902 1·000345 1·000012
z = 3 pt = 2·719106 1·065901 1·000516
z = 1 2·718503 1·065703

2·7700 1·053047 1·000090 1·000009 1·053042 1·000089 1·053040
2·8600 1·031349 1·000033 1·00000o 1·031229 1·000028 1·031200

P. = 3·0000 1·00000o 1·00000o 1·00000o 1·000000 1·00000o 1·000000
3·5000 0·906347 0·906347 0·906347 0·906347 0·906347 0·906347
4·0000 0·833333 0·833333 0·833333 0·833333 0·833333 0·833333
5·0000 0·725880 0·725880 0·725880 0·725880 Q.725880 Q.725880

Table 1 illustrates the behaviour of'1i = '1i(P) in the first phase of the motion for values
of z equal to 5, 3 and 1. The functions '1i(P) are increasing with increasing P, in the interval
Pt' S P s pf, up to maximum values at P = P!- When p > pT all functions '1i(P) are de­
creasing; when P = P* all'1i are equal to unity. In this manner the earlier accepted hypo­
thesis is confirmed that in the first phase of the motion we have Wi ::::: Wi-t. It is worth
noting also that '1i(P) in practice does not depend on z and that for each z all'1i except '1t
may be put equal to unity with a sufficient degree of accuracy.

In the Tables 2 and 3 the functions '1;(r) are listed for z = 3 and z = 1 for "low" P 2-49
and "high" P = 4·00 loads. All functions '1lr) are decreasing functions of time when a given
load is "low"; when the load is "high"-all are increasing up to the time r = r*, and
for r > r*, '1i(r) are decreasing. This behaviour numerically confirms the formula r* plpT,

TABLE 2

P = 2-49

Time r z = 3 z = I

'II 112 111

1·00 1·052368 1·000402 1·052358
1·05 1·043356 /·000391 1·043117
1·10 1·034243 1·000380 1·034055
1·15 1·025001 1·000353 1·024887
1·20 1·015644 1·000301 1·015602
1·25 1·006152 1·000281 1·006003
1-30 0·996506 1·000253 0·996412
1·35 Q.986686 1·000210 0·986417
1·40 0·976666 1·000146 0·976555
1·45 Q.966409 1·000111 0·966308
1·50 Q.955863 1·000058 0·955719

r~l = r~2 = 1·55 Q.944946 1·000009 Q.944981
r~l = 1·56 Q.944876
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TABLE 3

P = 4·00

Time, z = 3 z = 1

'It' '12 '11

1·00 0.833333 0·833333 0·833333
1·10 0·986173 Q.986173 0·986173
1·20 1·003997 1·000175 1·003815
1·30 1·021188 1·000296 1·021063

"3 = 1-470 1·065901 1·000516 1·065684
t'l = 1-472 1·064873 1·000494 1·065702

1·60 1·047618 1·000452 1·046916
1·70 1·032317 1·000403 1·032001
1·80 1·021109 1·000351 1·020916
1·90 1·009211 1·000302 1·009010
2·00 1·000334 1·000259 1·000298
2·10 0·992406 1·000208 0·991309
2·20 0·971785 1·000161 0·970986
2·30 0·952305 1·000109 0·951978

t~1 = tt2 = 2·47 Q.942832 1·000054 0·942816
t~2 = 2·49 Q.941899

which is reflecting the fact of vanishing of the plastic zone in the first span, when r = r*.
Note that at the time r = r* the plastic zone reduces to a point just in that section of the
span where it first may appear when a lower load is applied. The time of the motion is
the same for all rings in the case (with the exactness of the integration's step, taken up
equal in the problem ~r = 0·01). We must note that by Tables 2 and 3 we have till the end

Time,

1·00
1·05
1·10
1·15
1·20
1·25
1·30
1·35
1-40
1·45
1·50
1·55
1·56
1·60

t?1 = 1·66; t?2 = 1·65
'? I = 1·66

TABLE 4

P = 2-49

z=3 z = 1
Infinitely
long shell

WI W2 WI W

0·6793 Q.6698 0·6799 0·6630
0·7680 0·7278 0·7692 0·7268
0·8310 0·7875 0·8319 0·7858
0·8887 0·8422 0·8897 0·8398
Q.9413 0·8921 0·9423 0·8882
0·9886 0·9370 0·9902 0·9331
1·0375 0·9770 1·0397 0·9724
1·0668 1·0121 1·0689 1·0068
1·0992 1·0373 1·1008 1·0362
1·1256 1·0636 1·1273 1·0608
1·1467 1·0823 1·1484 1·0804
1·1626 1·0970 1·1639 1·0951
1·1638 1·0984 1·1643 1·0959
1-1788 1-1043 1·1804 1·1062
1·1816 1·1208

1·1845 1·1088
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TABLE 5

P = 4·00

Time r z = 3 z
Infinitely
long shell

w, W2 W, W

]·00 ]·6217 ]·5016 1·6229 1·5000
1·10 1·9611 1·7992 1·9627 1·7950
1·20 2·2443 2·0881 2·2461 2·0800
1·30 2·5274 2·3602 2·5288 2·3550

r,.! = 1·470 3·1781 2·8043 2·9597 2·7905
r" = 1-472 3·1794 2·8056 2·9640 2·7953

1·60 3·3045 3·0889 3·2203 3·0857
1·70 3·5420 3·2943 3-4267 3·2900
1·80 3-7518 3·4794 3·5617 3·4749
]·90 3·9365 3·6449 3·7376 3·6401
2·00 4·0743 3·7897 3·8224 3-7855
2·10 4·1927 3·9151 3·9560 3·9114
2·20 4·3429 4·0283 3·9927 4·0175
2·30 4-4247 4·1177 4·0424 4·]041

rt. = rtl = 2·47 4·5168 4·2178 4·0914 4·2062
rt, = 2·49 4-5186 4·2193 4·1047 4·2145

2·60 4·5379 4-2375 4·1804 4·2283
r?1 = 2·69; r?2 = 2·67 4·4812 4·2542

r?t = 2·69 4·4857

of the motion '12 ~ 1 while rJI t= 1. As the change of geometry was neglected the move­
ment is further impossible at rJl t= 1; so rJl was put equal to unity while we considered
the further movement; i.e. it was assumed that the first type jump of the function rJkr)
holds at the instaht that the ring stops by the 6-7 per cent of magnitude.

It is natural to consider, cetera paribus, that the different dynamic behaviour of links
with rings of limited rigidity of the infinitely long shell and the shell of finite length is
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due to the magnitude of the shift of "Ii from unity. Hence we must expect (by Tables 1-3)
the maximum residual displacements of each span, in the limits of the assumptions to be
slightly different from those of an infinitely long shell. This is true for all spans except
extremes and for these is the maximum residual displacements coinciding with those of a
shell with one ring in the middle (z = 1). Numerical results listed in the Tables 4-6 con­
firm the statement.

In the Tables 4 and 5 maximum displacements are listed as functions of time, corres­
pondingly to "low" p = 2·49 and "high" p = 4·00 loads. The time of stop of the skin­
plating '? 1 and '?2 are not equal. The difference is implied by the jump of '11(,) at the stop­
time of the ring. In Table 6 maximum residual displacements are listed in dependence of
the load p.

It is seen from Tables 4-6 that maximum displacements of non extreme spans are
exceeding by 6-8 per cent those of intrinsic spans.

Remember that in part I of this work [1] it was shown that maximum residual displace­
ments of a shell with identical movable supports are less (though very slightly) than
those of a shell with a fixed support. An analogous situation holds in this case. Extreme
spans correspond to the case of shells having one movable and one fixed edge. The per­
centage difference is greater in this case than that for shells with symmetrically fixed edges.

So numerical calculations show that maximum residual displacements in all spans
of a shell of finite length, except extremes in practice coincide with those of an infinitely
long shell; in the extremes with a maximum residual displacement of a shell with one ring
in the middle.
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A6cTpaKT-KpyroBali URJIHHAPHlfecxali o6orrolfKa, nOAKpenrreHHali paBHOOTCTOlllllRMH Apyr OT APyra

KOJIbueBblMH pe5paMR OrpaHRlfeHHOA )l(ecTKOCHI 101 1allleMrreHHali no KpallM, nOABepllCeHa AeltCTBHIO

HMnYJIbCHBHOA Harpy3KH. liicxoAHbIe npeAnOJIOllCeHHlI HAeHTH'IHbI npHHlITbIM B 'IaCTR I [1].
Tax xax npR AOCTaTOlfHO 6orrbllloil: lfaCTOTe paCnOJlOllCeHHlI pe6ep peweHRe 3aAa'lH nOJlY'laeTCli 1013

peweHRA, HaAAeHHblX B 'laCTR 1[1], nyTeM YXaJaHHbIX TaM B nyHKTe 6 nepe0601Ha'ieHRil:, TO HHlICe C'IHTaeT­

ClI, 'lTO XOJIbua pacnOJIe)l(eHbl "peAKO". liiCCJleAYIOTCli CJIy'laR "HR1KHX", "cpeAHHX" 101 "BbICOKRX"

Harpy30x, AJIli xallCAoro CJIY'lali BbIllRcaHbI AHcP$epeHl.\HaJIbHble ypaBHeHHlI ABHlICeHRlI B BHAe, YAo6HOM

AJIli HHTerpHpOBaHRlI Ha 3I..J,BM.
BcJIeACTBHe HeOARHaXOBOCTR pacnOJIO)l(eHRlI nporreTOB OT KpaeB 060JlO'lKH AHHaMH'IeCKOe nOBeAeHHe

RX, Boo6111e rOBopll, lIBJIlieTCli pa3JIR'l:HblM. OAHaKO, Ha KOHKpeTHbIX npRMepax 'IRCrreHHbIM nyTeM

noxa3blBaeTClI, 'lTO npR npO'lRX paBHbIX YCJIOBJoIliX C AOCTaTO'lHo!i: CTeneHblO TO'lHOCTH 'MOllCHO C'lHTaTb

nOBeAeHRe BCeX npOJIeTOB, xpOMe xpail:HHx, TaKRM lICe KaK H B 6eCKOHe'lHO AJlHHHOil: 060JIO'lKe, a ABHlICeHHe

KpaAHRX npOJIeTOB MO)l(HO npOaHaJIH3HpOBaTb Ha npHMepe 3allleMJIeHHoil: no xpaliM 060JlO'lKH C OAHHM

XOJIbQOM B cepeAHHe. )J;JIli napaMeTpa I-' B HHTepBaJIe I-' ~ 1-'1 ~ y'6 3TOT cPaKT nOATBepllCAaeTCli aHarrHTR­
'IeCKH.


